A High-Density SNP and SSR Consensus Map Reveals Segregation Distortion Regions in Wheat.

نویسندگان

  • Chunlian Li
  • Guihua Bai
  • Shiaoman Chao
  • Zhonghua Wang
چکیده

Segregation distortion is a widespread phenomenon in plant and animal genomes and significantly affects linkage map construction and identification of quantitative trait loci (QTLs). To study segregation distortion in wheat, a high-density consensus map was constructed using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers by merging two genetic maps developed from two recombinant-inbred line (RIL) populations, Ning7840 × Clark and Heyne × Lakin. Chromosome regions with obvious segregation distortion were identified in the map. A total of 3541 SNPs and 145 SSRs were mapped, and the map covered 3258.7 cM in genetic distance with an average interval of 0.88 cM. The number of markers that showed distorted segregation was 490 (18.5%) in the Ning7840 × Clark population and 225 (10.4%) in the Heyne × Lakin population. Most of the distorted markers (630) were mapped in the consensus map, which accounted for 17.1% of mapped markers. The majority of the distorted markers clustered in the segregation distortion regions (SDRs) on chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 5A, 5B, 5D, 6B, 7A, and 7D. All of the markers in a given SDR skewed toward one of the parents, suggesting that gametophytic competition during zygote formation was most likely one of the causes for segregation distortion in the populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly recombined, high‐density, eight‐founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments

Multiparent Advanced Generation Intercross (MAGIC) mapping populations offer unique opportunities and challenges for marker and QTL mapping in crop species. We have constructed the first eight-parent MAGIC genetic map for wheat, comprising 18 601 SNP markers. We validated the accuracy of our map against the wheat genome sequence and found an improvement in accuracy compared to published genetic...

متن کامل

Genotyping-by-Sequencing Facilitates a High-Density Consensus Linkage Map for Aegilops umbellulata, a Wild Relative of Cultivated Wheat

High-density genetic maps are useful to precisely localize QTL or genes that might be used to improve traits of nutritional and/or economical importance in crops. However, high-density genetic maps are lacking for most wild relatives of crop species, including wheat. Aegilops umbellulata is a wild relative of wheat known for its potential as a source of biotic and abiotic stress resistance gene...

متن کامل

Identification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers

Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...

متن کامل

Genetic Map of Triticale Integrating Microsatellite, DArT and SNP Markers

Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars 'Hewo' and...

متن کامل

Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population.

A genetic linkage mapping study was conducted in 93 doubled-haploid lines derived from a cross between Triticum aestivum L. em. Thell 'Arina' and a Norwegian spring wheat breeding line, NK93604, using diversity arrays technology (DArT), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) markers. The objective of this study was to understand the distribution, redunda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BioMed research international

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015